Course Outline
Deep Learning vs Machine Learning vs Other Methods
- When Deep Learning is suitable
- Limits of Deep Learning
- Comparing accuracy and cost of different methods
Methods Overview
- Nets and Layers
- Forward / Backward: the essential computations of layered compositional models.
- Loss: the task to be learned is defined by the loss.
- Solver: the solver coordinates model optimization.
- Layer Catalogue: the layer is the fundamental unit of modeling and computation
- Convolution
Methods and models
- Backprop, modular models
- Logsum module
- RBF Net
- MAP/MLE loss
- Parameter Space Transforms
- Convolutional Module
- Gradient-Based Learning
- Energy for inference,
- Objective for learning
- PCA; NLL:
- Latent Variable Models
- Probabilistic LVM
- Loss Function
- Detection with Fast R-CNN
- Sequences with LSTMs and Vision + Language with LRCN
- Pixelwise prediction with FCNs
- Framework design and future
Tools
- Caffe
- Tensorflow
- R
- Matlab
- Others...
Requirements
Any programming language knowledge is required. Familiarity with Machine Learning is not required but beneficial.
Testimonials (2)
Hunter is fabulous, very engaging, extremely knowledgeable and personable. Very well done.
Rick Johnson - Laramie County Community College
Course - Artificial Intelligence (AI) Overview
It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.